Skip to main content

Regression Models

9 regression algorithms from classical OLS to constrained optimization, all with full statistical inference.

Categories

Common Output Structure

All regression functions return a STRUCT with these fields:

FieldTypeDescription
coefficientsLIST(DOUBLE)Regression coefficients
interceptDOUBLEIntercept (if fit_intercept=true)
std_errorsLIST(DOUBLE)Standard errors
t_statisticsLIST(DOUBLE)t-statistics
p_valuesLIST(DOUBLE)p-values
confidence_intervalsLIST(STRUCT)Lower/upper bounds
r_squaredDOUBLER² (0-1)
adj_r_squaredDOUBLEAdjusted R²
rmseDOUBLERoot mean squared error
aicDOUBLEAkaike Information Criterion
bicDOUBLEBayesian Information Criterion
nBIGINTNumber of observations
kBIGINTNumber of predictors

All Functions

FunctionCategoryDescription
anofox_stats_ols_fit_aggLinearOrdinary Least Squares regression
anofox_stats_wls_fit_aggLinearWeighted Least Squares regression
anofox_stats_rls_fit_aggLinearRecursive Least Squares regression
anofox_stats_ridge_fit_aggRegularizedRidge regression (L2 penalty)
anofox_stats_elastic_net_fit_aggRegularizedElastic Net (L1+L2 penalty)
anofox_stats_poisson_glm_fit_aggGeneralizedPoisson GLM for count data
anofox_stats_alm_fit_aggGeneralizedAugmented Linear Model
anofox_stats_bls_fit_aggConstrainedBounded Least Squares
anofox_stats_nnls_fit_aggConstrainedNon-negative Least Squares
Showing 9 of 9
🍪 Cookie Settings