Regression Models
9 regression algorithms from classical OLS to constrained optimization, all with full statistical inference.
Categories
Linear Models
Classical least squares variants
OLSWLSRLSRegularized Models
Penalty-based regression
RidgeElastic NetGeneralized Linear Models
Non-Gaussian response distributions
Poisson GLMALMConstrained Models
Bounded and non-negative solutions
BLSNNLSCommon Output Structure
All regression functions return a STRUCT with these fields:
| Field | Type | Description |
|---|---|---|
coefficients | LIST(DOUBLE) | Regression coefficients |
intercept | DOUBLE | Intercept (if fit_intercept=true) |
std_errors | LIST(DOUBLE) | Standard errors |
t_statistics | LIST(DOUBLE) | t-statistics |
p_values | LIST(DOUBLE) | p-values |
confidence_intervals | LIST(STRUCT) | Lower/upper bounds |
r_squared | DOUBLE | R² (0-1) |
adj_r_squared | DOUBLE | Adjusted R² |
rmse | DOUBLE | Root mean squared error |
aic | DOUBLE | Akaike Information Criterion |
bic | DOUBLE | Bayesian Information Criterion |
n | BIGINT | Number of observations |
k | BIGINT | Number of predictors |
All Functions
| Function | Category | Description |
|---|---|---|
anofox_stats_ols_fit_agg | Linear | Ordinary Least Squares regression |
anofox_stats_wls_fit_agg | Linear | Weighted Least Squares regression |
anofox_stats_rls_fit_agg | Linear | Recursive Least Squares regression |
anofox_stats_ridge_fit_agg | Regularized | Ridge regression (L2 penalty) |
anofox_stats_elastic_net_fit_agg | Regularized | Elastic Net (L1+L2 penalty) |
anofox_stats_poisson_glm_fit_agg | Generalized | Poisson GLM for count data |
anofox_stats_alm_fit_agg | Generalized | Augmented Linear Model |
anofox_stats_bls_fit_agg | Constrained | Bounded Least Squares |
anofox_stats_nnls_fit_agg | Constrained | Non-negative Least Squares |
Showing 9 of 9