Skip to main content

Forecasting Models

31 forecasting algorithms from exponential smoothing to intermittent demand.

Categories

All Models

ModelCategoryDescription
ETSExponential SmoothingError-Trend-Seasonality state space
AutoETSExponential SmoothingAutomatic ETS selection
SESExponential SmoothingSimple Exponential Smoothing
SESOptimizedExponential SmoothingOptimized SES parameters
HoltExponential SmoothingLinear trend method
HoltWintersExponential SmoothingTrend + seasonality
SeasonalESExponential SmoothingSeasonal exponential smoothing
SeasonalESOptimizedExponential SmoothingOptimized seasonal ES
ARIMAARIMAAutoRegressive Integrated Moving Average
AutoARIMAARIMAAutomatic ARIMA (p,d,q) selection
ThetaThetaTheta method for short-term forecasts
AutoThetaThetaAutomatic Theta method
OptimizedThetaThetaOptimized Theta parameters
DynamicThetaThetaDynamic Theta method
DynamicOptimizedThetaThetaDynamic + optimized Theta
TBATSMulti-SeasonalTrigonometric seasonality, Box-Cox, ARMA
AutoTBATSMulti-SeasonalAutomatic TBATS selection
MSTLMulti-SeasonalMultiple Seasonal-Trend decomposition
AutoMSTLMulti-SeasonalAutomatic MSTL configuration
MFLESMulti-SeasonalMedian-based Feature-Logic Expert System
AutoMFLESMulti-SeasonalAutomatic MFLES configuration
NaiveBaselineRepeat last observation
SeasonalNaiveBaselineRepeat last seasonal period
SMABaselineSimple Moving Average
RandomWalkDriftBaselineRandom walk with drift
CrostonClassicIntermittentClassic Croston method
CrostonOptimizedIntermittentOptimized Croston parameters
CrostonSBAIntermittentSyntetos-Boylan Approximation
ADIDAIntermittentAggregate-Disaggregate method
IMAPAIntermittentIntermittent Multiple Aggregation
TSBIntermittentTeunter-Syntetos-Babai method
Showing 31 of 31

Model Selection Guide

Data TypeRecommendedAlternative
Clean, trendingAutoETSTheta
SeasonalAutoETSHoltWinters
Multiple seasonalAutoTBATSMSTL
Noisy dataAutoMFLESAutoARIMA
Sparse demandCrostonClassicADIDA
Short-termThetaSeasonalNaive
Long-termAutoARIMAAutoTBATS
Limited dataSeasonalNaiveTheta
🍪 Cookie Settings