Skip to main content

Exponential Smoothing

Weighted average methods where recent observations have more influence than older ones.

ModelDescription
ETSError-Trend-Seasonality state space model
AutoETSAutomatic ETS with component selection
SESSimple Exponential Smoothing
SESOptimizedSES with optimized smoothing parameter
HoltLinear trend method
HoltWintersTrend + seasonality
SeasonalESSeasonal exponential smoothing
SeasonalESOptimizedSeasonalES with optimized parameters
Showing 8 of 8

ETS (Error-Trend-Seasonality)

State space model with explicit error, trend, and seasonal components.

Parameters

ParameterTypeDefaultDescription
errorVARCHAR'A'Error type: A (Additive), M (Multiplicative)
trendVARCHAR'A'Trend type: A, M, N (None)
seasonalVARCHAR'A'Seasonal type: A, M, N
seasonal_periodINTEGER-Seasonal period (required if seasonal != 'N')

Example

SELECT * FROM anofox_fcst_ts_forecast(
'sales_data',
'date',
'sales',
'ETS',
28,
MAP{'trend': 'A', 'seasonal': 'A', 'seasonal_period': '7'}
);

Best for: Trending + seasonal data, smooth patterns.


AutoETS

Automatic ETS with component selection using information criteria.

Parameters

ParameterTypeDefaultDescription
seasonal_periodINTEGERautoSeasonal period (auto-detected if not specified)
confidence_levelDOUBLE0.90Prediction interval width

Example

SELECT * FROM anofox_fcst_ts_forecast(
'sales_data',
'date',
'sales',
'AutoETS',
28,
MAP{'seasonal_period': '7', 'confidence_level': '0.95'}
);

Best for: Most common use case, default choice for trend + seasonality.


SES (Simple Exponential Smoothing)

Weighted average of past observations with exponentially decreasing weights.

Parameters

ParameterTypeDefaultDescription
alphaDOUBLEautoSmoothing parameter (0-1)

Example

SELECT * FROM anofox_fcst_ts_forecast(
'stable_data',
'date',
'value',
'SES',
14,
MAP{}
);

Best for: No trend, no seasonality, stationary data.


SESOptimized

SES with automatically optimized smoothing parameter.

Example

SELECT * FROM anofox_fcst_ts_forecast(
'stable_data',
'date',
'value',
'SESOptimized',
14,
MAP{}
);

Best for: Stationary data with automatic parameter tuning.


Holt (Linear Trend)

Extends SES to capture linear trends.

Parameters

ParameterTypeDefaultDescription
alphaDOUBLEautoLevel smoothing
betaDOUBLEautoTrend smoothing

Example

SELECT * FROM anofox_fcst_ts_forecast(
'trending_data',
'date',
'value',
'Holt',
28,
MAP{}
);

Best for: Linear trending data without seasonality.


HoltWinters

Extends Holt to include seasonality (additive or multiplicative).

Parameters

ParameterTypeDefaultDescription
seasonalVARCHAR'additive''additive' or 'multiplicative'
seasonal_periodINTEGER-Seasonal period (required)

Example

SELECT * FROM anofox_fcst_ts_forecast(
'retail_sales',
'date',
'sales',
'HoltWinters',
52,
MAP{'seasonal': 'multiplicative', 'seasonal_period': '7'}
);

Best for: Clear trend + seasonality patterns.


SeasonalES

Seasonal exponential smoothing without trend component.

Parameters

ParameterTypeDefaultDescription
seasonal_periodINTEGER-Seasonal period (required)

Example

SELECT * FROM anofox_fcst_ts_forecast(
'seasonal_data',
'date',
'value',
'SeasonalES',
28,
MAP{'seasonal_period': '7'}
);

Best for: Seasonal patterns without trend.


SeasonalESOptimized

SeasonalES with optimized parameters.

Example

SELECT * FROM anofox_fcst_ts_forecast(
'seasonal_data',
'date',
'value',
'SeasonalESOptimized',
28,
MAP{'seasonal_period': '7'}
);

Best for: Seasonal patterns with automatic parameter tuning.


Comparison

ModelTrendSeasonalityParameters
SESNoNoalpha
SESOptimizedNoNoauto
HoltYesNoalpha, beta
HoltWintersYesYesalpha, beta, gamma
SeasonalESNoYesalpha, gamma
SeasonalESOptimizedNoYesauto
ETSConfigurableConfigurableFull state space
AutoETSAutoAutoAutomatic selection

When to Use AutoETS

AutoETS is recommended as the default choice for most forecasting tasks:

  • Automatically selects error, trend, and seasonal components
  • Handles both additive and multiplicative patterns
  • Produces prediction intervals
  • Fast and reliable
🍪 Cookie Settings